A Glycoprotein in Shells of Conspecifics Induces Larval Settlement of the Pacific Oyster Crassostrea gigas

نویسندگان

  • Hebert Ely Vasquez
  • Kyotaro Hashimoto
  • Asami Yoshida
  • Kenji Hara
  • Chisato Chris Imai
  • Hitoshi Kitamura
  • Cyril Glenn Satuito
چکیده

Settlement of larvae of Crassostrea gigas on shell chips (SC) prepared from shells of 11 different species of mollusks was investigated. Furthermore, the settlement inducing compound in the shell of C. gigas was extracted and subjected to various treatments to characterize the chemical cue. C. gigas larvae settled on SC of all species tested except on Patinopecten yessoensis and Atrina pinnata. In SC of species that induced C. gigas larvae to settle, settlement was proportionate to the amount of SC supplied to the larvae. When compared to C. gigas SC, all species except Crassostrea nippona showed lower settlement inducing activities, suggesting that the cue may be more abundant or in a more available form to the larvae in shells of conspecific and C. nippona than in other species. The settlement inducing activity of C. gigas SC remained intact after antibiotic treatment. Extraction of C. gigas SC with diethyl ether (Et2O-ex), ethanol (EtOH-ex), and water (Aq-ex) did not induce larval settlement of C. gigas larvae. However, extraction of C. gigas SC with 2N of hydrochloric acid (HCl-ex) induced larval settlement that was at the same level as the SC. The settlement inducing compound in the HCl-ex was stable at 100°C but was destroyed or degraded after pepsin, trypsin, PNGase F and trifluoromethanesulfonic acid treatments. This chemical cue eluted between the molecular mass range of 45 and 150 kDa after gel filtration and revealed a major band at 55 kDa on the SDS-PAGE gel after staining with Stains-all. Thus, a 55 kDa glycoprotein component in the organic matrix of C. gigas shells is hypothesized to be the chemical basis of larval settlement on conspecifics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The density and spatial arrangement of the invasive oyster Crassostrea gigas determines its impact on settlement of native oyster larvae

Understanding how the density and spatial arrangement of invaders is critical to developing management strategies of pest species. The Pacific oyster, Crassostrea gigas, has been translocated around the world for aquaculture and in many instances has established wild populations. Relative to other species of bivalve, it displays rapid suspension feeding, which may cause mortality of pelagic inv...

متن کامل

Larval and Post-Larval Stages of Pacific Oyster (Crassostrea gigas) Are Resistant to Elevated CO2

The average pH of surface oceans has decreased by 0.1 unit since industrialization and is expected to decrease by another 0.3-0.7 units before the year 2300 due to the absorption of anthropogenic CO2. This human-caused pH change is posing serious threats and challenges to the Pacific oyster (Crassostrea gigas), especially to their larval stages. Our knowledge of the effect of reduced pH on C. g...

متن کامل

The estimation of Dynamic Energy Budget (DEB) parameters for Crassostrea gigas larvae Rico-Villa, Benjamin and Pouvreau, Stéphane Département de Physiologie Fonctionnelle des Organismes Marins, Station IFREMER

The major commercial marine bivalve in French aquaculture is the Pacific oyster, Crassostrea gigas. Traditionally, bivalve culture relies on juvenile collection from the natural environment but due to the high year-to-year variation in spatfall recruitment the spat production in hatcheries is increasing recently. In this context, a better understanding of the biology of C. gigas larvae is requi...

متن کامل

Colonisation of the Non-Indigenous Pacific Oyster Crassostrea gigas Determined by Predation, Size and Initial Settlement Densities

Survival of incipient non-indigenous populations is dramatically altered by early predation on new colonisers. These effects can be influenced by morphological traits, such as coloniser size and density. The Australian non-native Pacific Oyster Crassostrea gigas is generally more fecund and faster growing compared to the native Saccostrea glomerata found in the same habitat. It is therefore imp...

متن کامل

The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae.

Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013